Ganesh R. Naik, S Easter Selvan, Hung Nguyen
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Volume 24, Issue 7, Pages 734 - 743, Publisher IEEE, Journal Ranking Q1, Impact Factor 4.9
Publication year: 2016


An accurate and computationally efficient quantitative analysis of electromyography (EMG) signals plays an inevitable role in the diagnosis of neuromuscular disorders, prosthesis, and several related applications. Since it is often the case that the measured signals are the mixtures of electric potentials that emanate from surrounding muscles (sources), many EMG signal processing approaches rely on linear source separation techniques such as the independent component analysis (ICA). Nevertheless, naive implementations of ICA algorithms do not comply with the task of extracting the underlying sources from a single-channel EMG measurement. In this respect, the present work focuses on a classification method for neuromuscular disorders that deals with the data recorded using a single-channel EMG sensor. The ensemble empirical mode decomposition algorithm decomposes the single-channel EMG signal into a set of noise-canceled intrinsic mode functions, which in turn are separated by the FastICA algorithm. A reduced set of five time domain features extracted from the separated components are classified using the linear discriminant analysis, and the classification results are fine-tuned with a majority voting scheme. The performance of the proposed method has been validated with a clinical EMG database, which reports a higher classification accuracy (98%). The outcome of this study encourages possible extension of this approach to real settings to assist the clinicians in making correct diagnosis of neuromuscular disorders.